FALLACIE

(carlo penco: appunti 1994-1995; revisione 2002)

questi brevi appunti sono una INTRODUZIONE ELEMENTARE al tema delle fallacie

(altri link a fondo pagina)

 


Fallacia è un tipo di ragionamento errato ma psicologicamente plausibile.

"Errato" vuol dire che il ragionamento non  è tale da garantire la verità  delle conclusioni. "Psicologicamente plausibile" vuol dire che il ragionamento e' tale da convincere un ascoltatore (o lo stesso parlante) ad accettare la conclusione come vera, (sia facendogli accettare la supposta verità  delle premesse o facendogli accettare una forma errata di inferenza).
I modi sono i più diversi. Studi recenti sulle fallacie sono sviluppati dalla psicologia cognitiva (ad es. Johnson-Laird). In manuali e pagine web si troveranno le più diverse classificazioni. Ma gli umani modi di errare sono innumerevoli. Non si può quindi dare una vera e propria classificazione esaustiva delle fallacie.
Tradizionalmente le fallacie si distinguono in formali (argomenti errati per la forma logica) o informali (argomenti che sfruttano abilità  retoriche o altre funzioni del linguaggio per nascondere la ovvia falsità di una premessa del ragionamento). Tra le fallacie informali si hanno però anche argomenti fallaci per aspetti formali più sottili; la forma logica apparente è corretta; ma vi sono altri aspetti della forma logica che sono posti scorrettamente (vedi un esempio nelle fallacie per ambiguità  in particolare la fallacia per divisione). La classificazione qui proposta segue I. Copi, Introduction to Logic, The Macmillan Company, New York, 1961 (tr.it. Introduzione alla logica, Il Mulino, Bologna, 1954).

 


FALLACIE FORMALI - SILLOGISTICHE:
(non saranno discusse in queste pagine)

FALLACIE FORMALI - PROPOSIZIONALI:

FALLACIE INFORMALI - per RILEVANZA

FALLACIE INFORMALI per AMBIGUITA'

 

FALLACIE INFORMALI PER RILEVANZA

Iniziamo con le fallacie informali per rilevanza, cioè i tipi di argomenti che usano, per sostenere la propria conclusione, elementi che non sono rilevanti per la conclusione stessa, e quindi inadeguati a stabilirne la verità. Spesso parlerà di "avversario" per indicare l'interlocutore di cui si vuole sconfiggere una tesi, o che si vuole convincere di una propria tesi.
Spesso le fallacie informali sono entimemi, cioè modi contratti di ragionamento, che si possono tradurre in una forma logicamente corretta, ma con premesse false o altamente implausibili. Un buon esercizio è dunque tradurre in forma aperta (ad esempio inun ragionamento sillogistico) gli argomenti sfuggenti delle fallacie. Un esempio viene dato nell'argomentum ad hominem qui sotto. Potete esercitarvi nel trovarne altri.

1. ad baculum - ad misericordiam - autorità - ad populum

Queste fallacie sono davvero grossolane; "ad baculum" è il ricorso alla forza (al bastone), "ad misericordiam" è il ricorso alla pietà, e "ad verecundiam" è il ricorso all'autorità. Dovrebbero essere facilmente individuabili; quindi non ne discuterà E non sbaglio perché sono un professore (fallacia autorità ); se qualcuno sostiene il contrario sarà  bocciato; e il fatto che sarà  bocciato vuol dire che sbaglia (fallacia della forza); e, per favore, ho lavorato tanto e sono stanco, quindi non discutere queste fallacie non comporta alcuna seria mancanza (fallacia del ricorso alla pietà, spesso usato nei processi). Ed è opinione universale, tutti sanno che non è bene studiare troppo, quindi non faccio altro che aiutarvi nel vostro bene (fallacia del ricorso al popolo beota, così tanto utilizzata ai nostri giorni)

2. ad hominem - diretto o circostanziale.

L'argomento ad hominem (detto "abusivo") è il ricorso diretto all'oltraggio più o meno nascosto della persona che sostiene la tesi come strumento per negare la tesi stessa senza entrare nel suo merito. Es. "quello che dice è sbagliato! E' sempre stato un cretino."

L'argomento ad hominem circostanziale è il ricorso a problemi non rilevanti per appoggiare una conclusione, ma tali da influenzare le circostanze specifiche in cui si trova l'avversario. Ad es. l'argomento del cacciatore quando dice: "mi critichi perché uccido bestie per piacere, ma anche tu mangi per piacere carne di animali innocenti!" Ma una cosa è uccidere per piacere, e un'altra è mangiare piacevolmente. Il non essere vegetariano non comporta aderire alla necessità  dello sport della caccia. O ai professori: "è ovvio che sostengano la necessità  di aumento di stipendio ai professori, essendo essi stessi professori!". Ma le ragioni per cui lo sostengono sono diverse dall'interesse personale con cui perseguono questa richiesta.  
La forma dell'argomento, se esposto nei dettagli, può essere reso corretto; ma con premesse false o altamente discutibili, come la premessa (1) qui sotto:
(1) tutti quelli che mangiano carne con piacere uccidono animali per piacere
(2) tutti quelli che uccidono animali per piacere sono criticabili
-----------------------------------------------------------------------------------
(3) tutti quelli che mangiano carne con piacere sono criticabili
L'argomento sotteso potrebbe anche essere, più semplicemente il seguente (nella forma del modus ponens), ove la premessa (1), esposta meno emotivamente, risulta quantomeno implausibile:
(1) chiunque prova piacere nel mangiare carne è criticabile
(2) tu provi piacere nel mangiare carne
(3) tu sei criticabile
Oppure ancora, ove la premessa (1b) è quantomeno dubbia (il motivo per cui si mangia carne non è sfogare la propria aggressività  con degli innocenti, ma sopravvivere):
(1a) chi uccide un animale a caccia aggredisce degli innocenti
(1b) chi mangia carne con piacere aggredisce degli innocenti
. (2) chi se la prende con chi non gli ha fatto niente è abominevole
----------------------------------------------------------------------
(3) chi mangia carne con piacere è abominevole
Come si può vedere un argomento fallace può essere ritradotto in diverse forme corrette di ragionameno. La fallacia qui consiste in assunzioni non del tutto espilcite, mascoste dalle assonanze emotive delle parole. Non sarà che anche nella critica all'argomento dei cacciatori vi sia qualche fallacia?

3. ad ignorantiam

Inferire la verità  di una proposizione dal fatto che non è stata dimostrata falsa, o viceversa. Esempi classici: "gli UFO esistono! Nessuno è riuscito a dimostrare definitivamente che non ci sono"; oppure: "la telepatia non esiste! Nessuno ha mai dimostrato che due persone possono essere telepati"

4. accidente (diretto e converso) e fallacia induttivista

E' fallace applicare una norma generale, solitamente valida, in un caso particolare (accidentale) che rende la norma inapplicabile. "E' bene bere un bicchiere seduti a tavola, quindi lo bevo" dice dopo essersi ubriacato in piedi. E' fallace altresì generalizzare da un caso particolare a un legge: ad es. "la morfina è usata in ospedale; è una droga; quindi è utile liberalizzare le droghe perché tutti possano usufruirne". Oppure: "quel liquore mi ha fatto vomitare; bisognerebbe proibirli per legge, i liquori!"

Derivare certezza da un serie di casi particolari è la tipica fallacia induttivista; il tacchino induttivista di Russell sostiene: "tutti i giorni mi hanno dato da mangiare; quindi anche domani mi daranno da mangiare"; ma il giorno di Natale...

5. petitio principi - non sequitur

Due delle più classiche fallacie, qui riunite perché le migliori e più ricordate anche nelle chiacchiere tra filosofi oggi.

- "La petitio principi è una fallacia bellissima, la migliore. Infatti tra le varie fallacie considerate essa rappresenta il punto più alto dell'estetica delle fallacie" (questo è un esempio di petitio principi). Petitio principi è dare per dimostrata o assumere tra le premesse (esplicite o implicite) la conclusione che si vuole dimostrare. Dà spesso luogo ad argomenti circolari: "Le persone furbe studiano molto. Chi sono le persone furbe? Quelle che usano bene il loro tempo. Cosa vuol dire usar bene il proprio tempo? Ma è chiaro! Vuol dire studiare molto."

- Il non sequitur, o causa falsa, è stata chiamata spesso anche post hoc ergo propter hoc. Questa ultima dicitura richiama semplicemente il caso in cui si inferisce che un evento A è causato da un evento B solo perché A accade dopo B. Ad es."Mi sono suicidato perché mi hai trattato male" (ma la causa del mio suicidio era la mia dabbenaggine e non il tuo trattarmi male). Non sequitur è ogni conclusione che assume come causa di un evento qualcosa che non ne è causa; anche se legato di solito al concetto di causalità  (e quindi a problemi di logica induttiva) "non sequitur" indica anche, più in generale, la fallacia di assumere come motivo o ragione per una conclusione qualcosa che non è utilizzabile come motivo o ragione per la conclusione (per saperne di più: fallacie causali)

6. per asserzione presupposta 

Fallacia chiamata solitamente "plurimum interrogationum" o "questione complessa", che io preferisco chiamare come nel titolo in grassetto. "Hai finito di sbadigliare leggendo queste note sulle fallacie?" Questa è una domanda che presuppone che tu abbia sbadigliato. La fallacia è usata abilmente da investigatori e poliziotti: "dove hai nascosto le prove?" presuppone che tu abbia nascosto le prove (e che io lo sappia). I politici hanno portato questa fallacia a un livello di raffinatezza teorico meraviglioso. Domande del tipo: "preferisci il comunismo o la libertà ?" "Preferisci il liberalismo o la giustizia sociale?" sono rozze approssimazioni dell'abilità  retorica della nostra classe dirigente. La fallacia qui può consistere nel far presupporre la verita' di un asserto nel porre una domanda, e ottenere una risposta non voluta.

7. ignoratio elenchi

Si usa un buon argomento che conduce a una buona conclusione; solo che la conclusione non è quella di cui si discuteva, ma una più generale. Usato nei processi o per discutere proposte di legge: ad es., discutendo di una persona che accuso di assassinio, dimostro che l'assassino è un crimine orribile e che questo assassinio particolare è ancora più efferato dei normali casi di assassinio. Ma non ho dimostrato che questa persona e' l'assassino.


Come possono convincere simili pacchianate? Abilità  retorica, emozioni e stoltezza del pubblico. Ragioniamo poco, siamo sensibili alla passione e all'emozione e siamo spesso ingannati. Ma un filosofo dovrebbe sempre ricordare che "la ragione ha le sue passioni, che il cuore non può provare" (Roberto Magari); e deve perseguirle con costanza. Passiamo ora alle fallacie per ambiguità .

  


 
FALLACIE INFORMALI PER AMBIGUITA'

Dette anche "fallacie nella chiarezza" usano parole o frasi ambigue, il cui significato cambia nel corso dell'argomento, rendendolo fallace.

1. Equivocazione Quando si usa una parola con più sensi nel corso di una argomento; ad es. "fine di una cosa è la sua perfezione; la morte è la fine della vita; quindi la morte è la perfezione della vita". Qui si usa "fine ora come "scopo" e ora come "termine". Facendo le giuste sostituzione si vede che l'argomento non esiste più. In generale utili per la equivocazione sono i termini relativi (es. "buono" è relativo al tipo di attività; "piccolo" alla dimensione standard, ecc.): "è un buon amministratore, quindi è un buon presidente", "E' un buono studioso, quindi è un buon insegnante" (ma non segue, e spesso ottimi studiosi sono pessimi insegnanti). Oppure "gli elefanti sono animali, quindi gli elefanti piccoli sono animali piccoli" (l'argomento vale se al termine relativo se ne sostituisce uno non relativo come "grigio" o "con le zanne").

2. Anfibolia Un'asserzione è anfibolica se può essere vera o falsa a seconda dell'interpretazione. E questo è permesso dal modo impreciso con cui è costruita. Ottima per i titoli di giornale ("contadino si uccide dopo un addio alla famiglia con un colpo di fucile") o negli oracoli (famoso l'oracolo di Delfi a Creso: "se Creso farà  guerra a Ciro, distruggerà  un potente impero" - e poi Creso perse, ma l'oracolo sostenne: già  hai distrutto il tuo impero!). 

3. Accento Dipende da enunciati che cambiano interpretazione a seconda dell'accento. Provate ad es. a dare diverse interpretazioni alla frase seguente, a seconda dell'accento delle parole in corsivo: "noi non dovremmo parlare male dei nostri amici". Sottolineature, virgolettature, cose scritte troppo piccole (come ad es. il solito "+IVA") ecc. sono mezzi usati per fallacie dell'accento: una frase di per sè vera, con un certo accento può divenire una falsità  o comunque qualcosa di palesemente fuorviante.

4. Composizione Quando si prende la parte per i tutto o i membri per la classe. Ad esempio: ogni pezzo di un carro armato e' leggero; quindi un carro armato e' leggero. Ma anche argomenti del tipo:
i cani sono comuni
gli husky sono cani
gli husky sono comuni
Qui si fraintende la seconda premessa, che fa funzionare il ragionamento solo se tutti gli husky sono tutti i cani; ma gli husky sono solo una parte dei cani.  

5. Divisione. Il contrario del precedente; quando qualcosa che è vero del tutto si ritiene vero per ogni singola parte. Gli esempi sono più  eclatanti, e dipendono spesso dalla distinzione del senso distributivo o collettivo in cui si predica qualcosa di una classe. Ad es.: predico in senso distributivo "mortale" della classe "uomo" se intendo che ciascun uomo è mortale. Ma predico solo in senso collettivo della classe degli uomini che è numerosa. Non lo predico di ciascun uomo. Lo schema di usare una predicazione collettiva come distributiva è  una fallacia comune a esempi bizzarri come:

gli uomini sono numerosi i pellerossa stanno scomparendo
socrate è un uomo John è un pellerossa
socrate è numeroso John sta scomparendo  

  Da Kant e Frege in poi si possono vedere queste fallacie come connesse anche alla confuzione di predicati di primo livello (che si applicano a singoli individui) e predicati di secondo livello (che si applicano a predicati di primo livello). Ad es. è ovvio che "...èun uomo" si predica di individui, e "...è numeroso" si predica di classi (espresse da predicati di primo livello come "uomo"). La fallacia viene evitata e corretta se si esplicita (formalmente o anche a parole) la differenza, dicendo ad es. "l'insieme degli uomini è numeroso/ Socrate è un uomo/ Socrate appartiene a un insieme numeroso."


FALLACIE FORMALI - LE REGOLE DI DEDUZIONE

Tra le più classiche fallacie ricordate nella storia della logica ricordiamo le fallacie formali legate al modus ponens e al modus tollens (che sono regole di deduzione valide anche nella logica contemporanea).

Le fallacie sono argomenti espressi nel linguaggio naturale che violano regole di inferenza valide della logica (ovviamente occorre avere un certo accordo su quali regole di inferenze si accettino nel discorso; si assume qui per semplicita' che valgano le regole classiche dell'inferenza, come il modus ponens o regola di separazione). Vediamo qui di seguito lo schema di inferenza corretto e un tipico errore che consiste nell'affermare il conseguente di un condizionale e derivare l'antecedente (e in seguito una situazione analoga con il Modus Tollens)

Modus ponendo ponens
(regola corretta)
          Affermazione del conseguente
(forma scorretta)
a -->b
a -->b
a
b
---------
---------
b
a

MPP : "se piove allora fa freddo; piove; quindi fa freddo"
"se carlo ha scritto un libro allora è  un grande studioso; c. ha scritto un libro; quindi è  un grande studioso."

FALLACIA 1): "se piove allora fa freddo; fa  freddo; quindi piove" / "se carlo ha scritto un libro, allora è  un grande studioso; c. è  un grande studioso; quindi ha scritto un libro"

Modus Tollendo Tolles
(regola corretta)
            Negazione dell'antecedente
(forma scorretta)
a -->b
a -->b
¬ b .
.¬ a
---------
---------
¬ a
¬ b

MTT: " se piove allora fa freddo; non fa  freddo; quindi non piove"
" se Carlo ha preso i soldi, allora è un ladro; carlo non è  un ladro; quindi non ha preso i soldi".

FALLACIA 2) : " se piove allora fa  freddo; non piove; quindi non fa  freddo" / " se Carlo ha preso i soldi allora è un ladro; carlo non ha preso i soldi; quindi non è  un ladro."

E' abbastanza ovvio da questi esempi che non vi è una grande evidenza intuitiva per queste fallacie (anche se si potrebbero facilmente trovare esempi più persuasivi). Ancor più ammirevoli gli antichi che riuscirono a determinarle con precisione. E' un piacevole esercizio verificare la validità  e l'invalidità  di queste regole di ragionamento con le tavola di verità  del condizionale filoniano, ripresa sia da Boole che da Frege e dalla logica moderna; lasciamo l'esercizio al lettore alle prime armi; e gli ricordiamo la tavola di verità  del condizionale (cosi', proprio come la aveva pensata Wittgenstein nel Tractatus, qualche secolo dopo Filone il Megarico)

A.B A->B
V.V . V
V.F . F
F.V . V
F.F . V